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Ahtract. The static structure factor S(k) of liquid krypton has been measured by neutron 
diffraction at temperatures T = 130, I69 and 199 K and at several densities. The extended 
k range of the measurements. 3.6-164 nm-', and the high accuracy of the data allow an 
unambiguous computation of the radial distribution function g( r )  and of the direct correlation 
function 47). All three functions S(k), g(r) and e@).  are in remarltably good agreement with 
the theoretical mult when the Azir pair interaction plus the triple-dipole ulree-body interaction 
are used in a triplet MHNC equation. We obtain definite evidence that the Lennard-Jones pair 
potential is not a good representation of the interatomic forces. The small remaining deviation 
between theory and experiment indicates the presence of some additional many-body force which 
is repulsive at shoe distance and Jriractive at inlemediate distance. 

1. Introduction 

Rare gases are systems simple enough in their electronic structure that it is commonly 
believed that it should be possible to describe their thermodynamic and correlation properties 
on the basis of some simple interatomic interaction law. It is well established [l] that a 
pair-additive interaction is not adequate because the pair interaction q ( r )  as determined by 
properties of the low-density gas and from atom-atom scattering data does not give a correct 
description of thermodynamic properties at higher density. The minimum additional term 
is a three-body interaction rz,r3) which is usually taken to be of the Axilrcd-Teller- 
Muto (ATM) form [2]. With this model of interaction the thermodynamics is well reproduced 
[3] but a potentially much more sensitive test is a comparison of the pair correlation function 
g(r)  or of the related static structure factor S ( k ) .  On the other hand if at low density S(k)  
is a faithful representation of U&-). it is well known [4] that at high density the overall 
behaviour of S ( k )  is dominated by excluded volume effects. There is not yet a clear cut 
answer to whether the measured S ( k )  can reach the accuracy needed to probe the detailed 
shape of the interatomic interaction and whether the present models of the interaction are 
satisfactory. For instance the extensive measurement [SI of S(k)  in Kr along the room 
temperature isotherm gave evidence [6] of growing deviations from the theoretical S(k)  as 
the density increases. However, definite conclusions could not be drawn because the limited 
k range over which S ( k )  was measured did not allow g(r )  to be deduced and because S(k)  
at small k did not extrapolate well to the thermodynamic value of S(0). 

With this in mind we have undertaken a new study, experimental and theoretical, of 
the structure of Kr in the liquid phase at several densities and temperatures. Improvements 
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in neutron sources, diffractometers and analysis of the data allow S(k) to be obtained with 
higher precision than before and over an extended k range. We stress that a real test of 
models of interatomic interactions can only be carried out if S(k) is known over a large 
enough k range so that a meaningful g(r) can be deduced via a Fourier inversion. If 
this is not the case quite different forms of interaction can reproduce the data to within a 
given uncertainty [7]. On the theoretical side we also have now integral equations [8] of 
high accuracy for g(r) when a threebody interaction is present, so that a stringent test of 
interaction models can be performed. 

The contents of the paper are as follows. Section 2 gives some theoretical background 
and the equations we are using. The experiment and analysis of the data are discussed 
in section 3 and in section 4 experiment and theory are compared in terms of S(k), g(r) 
and of the Ornstein-Zernike (02) direct correlation function c(r). Section 5 contains our 
conclusions. 

2. Theory and models of interadion 

The function g(r) completely characterizes the static correlations in a fluid at the pair level. 
It is related to the measured structure factor S(k)  by the relation 

S ( k )  = 1 + n d3r e*.'&@) - 11 (1) s 
where n is the number density. g(r) is proportional to the probability of finding a couple of 
atoms at a distance r apart and it is normalized so that g(r) = 1 for uncorrelated particles. 
Therefore the quantity H ( k )  defined by 

S ( k )  = 1 + nH(k )  (2) 

directly reflects the correlations in the fluid because it is simply the Fourier transform of 
h(r) = g(r) - 1. An equivalent representation of the pair correlations is via the direct 
correlation function c(r), which is defined in terms of the oz relation 

g(r) - 1 = c(r) +n d'r'c(r')[g(lr -r'l) - 11. (3) 

In  k space this becomes an algebraic relation so that c(k)  can be expressed in terms of S(k)  

s 
bY 

c(k)  = [ l  - s-'(k)l/n. (4) 

c(r) has an important theoretical role [4] and. in addition, it is a useful representation of the 
correlations because it reflects the interatomic interaction at intermediate and large distances 
more directly than g(r). 

In a classical system, as we assume here, g(r) is a functional just of the interatomic 
interaction U(r1, . . . , rN) which we write in the form 

u(r1, ..., r N )  = C u z ( r i j ) +  u3(ri,rj,ri) ( 5 )  
i c j  i C j d  
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where ri is the position of the ith atom, rij = Irj - ril and we have neglected many- 
body forces beyond the triplet level. A fundamental relation f4.81 between correlations and 
interaction is given by 

(6) g(r) = exp[-guz(r) + g(r) - 1 - c(r) + C(r) + E(r)] 

where g = I/kBT, C(r) is the dressed threeparticles vertex 

C ( r d  = n Sd3r3g(r13)g(r*3)(exp[-Bu3(rr,rz,r~)l - 11 (7) 

and E(r) is the so called bridge function. This function is known only formally and in a 
diagrammatic language it is the sum of the infinite set of elementary diagrams. A useful 
approximation [9] consists in replacing E(r) by the bridge function Em(r;d) of hard 
spheres at the same density of the fluid and of a suitable diameter d. A variational principle 
[IO] stipulates that the best choice of d is the value for which 

gHs is the pair correlation function of the hard sphere system and EHS can he obtained from 
equation (6) ( in this case C(r) = 0 and u~ is the hard sphere potential) because an accurate 
parametrization of gHS is known [ 111. This produces the so-called triplet-MHNC equation 
[8], i.e. the MHNC equation extended to three-body forces. Thus our equation reads 

g(r) = exp[-Buz(r) + 8 0 )  - 1 - c(r) + CW + EHsWI (9) 

which together with (3). (7) and (8) forms a closed equation for g(r) and this is solved by 
a suitable iterative method. If only two-body forces are present one has simply to drop the 
term C(r) in (9). 

In a previous study 161 of Kr on the room temperature isotherm we have used a 
different version of MHNC, a crossover formulatlon [IZ]. That equation is more complex 
to use because the approximate bridge function contains three parameters so that in place 
of the single equation (8) one has a set of three additional equations which determines 
these parameters. The improvement given by the crossover MHNC is only marginal for the 
thermodynamic states of our experiment so in the present study we have used this triplet 

We have used for uz(r) the empirical pair potential HFD-B derived by Aziz and Slaman 
[13]. The Barker et ai [I41 pair potential gives a very similar pair-correlation function and 
we have also performed a few computations with the Barker pair potential as a check. For 
the three-body potential we have used the tripledipole ATM form 

(10) 

where q+ are the angles of the triangle formed by ri, i = 1, 2, 3, and U = 220.4 x 
erg cm9 [15]. For the relevant interatomic distances the quantity Pus is small so that 

in the expression of C(r) the exponential function can be expanded and truncated to linear 
order in u3. 

The Lennard-Jones (U) potential is believed to represent an 'effective' pair potential 
which gives a reasonably accurate representation of the rare gases in the medium-density 
regime. We have computed g(r) and S(k) with MHNC for the U potential 

(1 1) 

MHNC. 

u3(r1,rz,r3) = U(I + 3 c o s ~ I c o s ~ c o s $ ) / r L r ~ r : ,  

uw(r) = 4 ~ [ ( ~ u W / r ) ' ~  - ( ~ U / r ) ~ l  
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in order to test whether the accuracy of the measured S(k)  is such that it is possible to 
discriminate between different models of the interaction. Different values for c u  and uu 
have been suggested for Kr and they fall in the range 1-180 K for €u/ks and 0.36- 
0.37 nm for flu, We have used the values 6 U / k B  = 166.2 K and uu = 0.368 nm 141 
which give the best representation of the second virial coefficient. We have also performed 
some computations with different choices of EW and OW but, as will be discussed in the 
next section, this does not alter our conclusions. 

Finally the measured S(k )  will also he compared with the smcture factor &(k; d )  
of hard spheres (HS). SHS is computed with the Verlet-Weis parametrization 1111 and the 
diameter d is determined by the condition that the main peak of SHS has the same height 
as the experimental S(k) .  

3. Experiments and data analysis 

The neutron diffraction measurements on Kr were performed at the Institut Laue-Langevin 
in Grenoble using the D4B diffractometer. The wavelength of the monochromatic neutron 
beam was 1 = 0.07054 f 0.00001 nm and was determined by means of nickel powder 
diffraction. This wavelength allowed us to reach a maximum value of exchanged wavevector 
k of - 160 nn-' with a resolution of A k / k  N 2%. The scattered intensities were measured 
with two 3He multidetectors of which the first was placed at 1455 mm from the sample 
while the other was placed at 727 mm, allowing us to measure the two sets of k values 
3.57 < k e 95.7 nm-' and 70.32 < k < 162.36 nm-' respectively. The data in the 
overlapping parts of the two ranges were used to connect the two sets of measurements. 
The efficiency of each multidetector cell was measured to an accuracy better than 0.1%. 
The measurements at each thermodynamic state were taken in repeated runs to judge the 
stability of the experimental set up. During the experiments the krypton samples were 
kept in a circular cylindrical vanadium container (height 63 mm, diameter 20.5 mm, wall 
thickness 0.5 nun) which was maintained at the desired temperature by means of an Orange 
ILL cryostat. The pure normal isotopic Kr mixture (99.995%) was intrcduced, during the 
experiment, into the scattering cell by means of a capillary line where pressure was measured 
with a calibrated pressure transducer. 

In order to perform the background correction, including the correction for the neutrons 
scattered from the container and the tail of the cryostat, we used the 3He technique [16] 
which consists in measuring the neutrons scattered by the system after having replaced the 
Kr sample with an amount of 3He such that the macroscopic total cross section of the Kr 
sample and the corresponding absorption cross m i o n  of 3He are equal. This technique is 
useful because it considerably simplifies the data correction with respect to the technique 
[17] in which the empty beam and empty container scattered intensities are measured. 
The measuring time was chosen at each measured density in such a way that a statistical 
precision of - 0.1% on the counting could be achieved. The Kr scattering data were then 
corrected for background, multiple scattering (including scattering between the sample and 
the container and the Va tail of the cryostat), attenuation effects and inelastic scattering. We 
also applied a correction in order to replace the nominal scattering angle by the average 
scattering angle, this difference being due to the finite size of both the sample and the 
detector cells. 

When the measured intensities are available in a sufficiently large k range the absolute 
normalization of I @ ) ,  which is necessary to derive the structw factor S(k)  from the 
measured intensities corrected as previously discussed, can be performed by using the fact 
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that S ( k )  converges to unity for high k values [16]. The structure factor is then derived by 
means of the knowledge of US and U, which are the total and the coherent scattering cross 
sections, respectively. In the case of Kr the published values of the ratio are spread 
out over a range of about 10% 15,181, even though the latest published compilation [19] 
gives an estimate of 2.2% for the error on the recommended value. 

Since we aimed at a better final accuracy for the S(k)  values, we have adopted for the 
normalization and the subsequent derivation of the structure factor a procedure 1201 based 
on the facts that (a) S(k)  at high k values converges to unity and (b) S(k = 0) is given by 
the compressibility theorem according to 

S(0) = n k s T X r  (12) 

where XT is the isothermal compressibility. The values of XT for our experimental 
states have been derived from the thermodynamic data of [21]. This procedure can be 
applied because of the high precision of our data and the well optimized k range of our 
measurements. The value of the ratio is thus determined by the normalization itself 
1201. The extrapolation of the experimental data toward k = 0 has been performed following 
the theoretical behaviour calculated by means of the two- and three-body potentials as 
explained in the previous section. We have also verified that the extrapolation is model 
independent within the required precision [ZO]. The normalization has been performed for 
the measurement of S ( k )  at T = 169 K and n = 14.57 nm-' because in this case the 
theoretical calculation converges almost exactly to the thermodynamic limit. In addition 
the density is not tm large and this is the region where the MHNC equation is known 
[7] to be very accurate. The value of us/uC obtained by means of this procedure is 
us/uC = 1.068 f 0.002. This value has been then used in order to derive S(k)  for all 
the other measured thermodynamic points. It is worth noticing that this value for U&, 

which is different from the value 0.022 of the latest compilation found in 
the literature [19], does not represent the result of a direct measurement of the ratio of the 
cross sections; in our case it could also contain small contributions from systematic errors 
in the calculations of the corrections to the measured intensities. A detailed analysis 1201 
shows that these errors should be essentially k independent so that our procedure removes 
their effects. The accuracy of our normalization procedure is determined by the accuracy 
of the data of our experiment, of the compressibility X T  and of the extrapolation toward 
k = 0; we estimate that the absolute error introduced in S(k)  by this procedure is of the 
order of 0.002. 

The measurements were performed at seven different thermodynamic states in dense 
fluid Kr below the critical temperature; table 1 repods temperatures and densities of the 
seven states. The accuracy of the temperature determination was 0.1 K, while the pressure 
was determined with an accuracy of 0.01 bar. The densities were derived by means of the 
p ,  V, T measurements of Street and Staveley [21] and they are given with an accuracy 
better than 0.01 

From our measured S ( k )  we also derived, by means of equation (2). H ( k )  which more 
directly reflects the interparticle correlations. Our data have a very smooth variation with k 
over all the measured range as can be seen in figure 1 for the measurement at T = 199 K 
and n = 11.86 n ~ n - ~ .  This is very close to one of the states (T = 200 K, n = 11.55 
of the measurements of Fredrikze [22] and these data are also shown in figure 1. There is 
an overall agreement but well defined deviations are also present. This is most noticeable 
in the small-k region, but also the height of the main maximum is somewhat different. It is 
clear that we have more regular data both at small and at large k. We also notice that the 

= 1.001 
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Table 1. Temperature and density of the measured states. 

T n 
( K) (nm-)) 

1 169.07 14.57 
2 169.22 14.40 
3 I6908 14.25 
4 199.22 11.86 
5 199.09 11.28 
6 130.06 17.01 
7 130.06 16.83 

low4 part of H ( k )  shows that OUT data in this region behave more consistently with the 
S(0) value derived from the isothermal compressibility data. This consistency is also true 
for the other thermodynamic states as i t  will be shown in detail in the next section. 

0.050 

0.025 
I .  

0.000 T I: 
1 

c - 
E - 

-0.025 
24 Y 

X z 
- 

-0.075 
0 10 20 30 40 50 60 

I< ("In-') 

0.002 -, 

60 80 100 120 140 160 
k (nm-I) 

Figure 1. H(k) of Kr from our measurement 4 (T = 199 K and n = 11.86 om-)) (+), from 
Fredrikze 1221 (T = 200 K, n = 11.55 nm-') (0 )  and from the compressibdity data at k = 0 
(*). In (a) the ermr bm of the present m u r e m e n f  are below the size of the symbols. 

The states of our seven measurements are grouped at closely separated densities at three 
different temperatures, 199 K, 169 K and 130 K. Here we discuss only one measurement 
at each temperature, i.e. experiments 1, 4 and 7. The small variation of the measured S ( k )  
at the neighbouring states will be discussed separately because it will give access to the 
density derivative of S ( k ) .  

The overall behaviour of S ( k )  for these three states is shown in figure 2. On such a scale 
the data are almost indistinguishable from the theoretical result for the Aziz pair interaction 
plus the ATM threebody one. The motivation for having performed the measurements over 
an extended k range is to compute in a reliable way h(r)  = g(r)  - 1 from 

h(r) = - ' I k H ( k )  sin@) dk. (13) 2 6 r  

Different rules have been used in the past to extend H ( k )  outside the measured range. Here 
we have used a simple method which depends on the fact that the theoretical H ( k )  is in 
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very good agreement with the data. In the range 60 c k < 100 nm-' theory and experiment 
agree to within the experimental error so that in computing h(r) we use the theoretical H(k) 
in the range 100-300 nm-l and beyond this range we put H ( k )  = 0. Fork c 3.7 nm-' 
the H ( k )  of experiments I and 7 is joined with the compressibility value H ( 0 )  again by 
the theoretical H ( k )  displaced by the small amount necessary to join it smoothly with the 
experimental thermodynamic limit. For experiment 4 the extrapolation in the same region 
is made with a fourth-order in k polynomial. 

0.5 

0.0 
2.0 

1.5 - 
4 x 1.0 

0.5 

0.0 
2.5 

2.0 

1.5 

1 .o 
0.5 

0.0 
0 20 40 00 00 100 

I< ("In-') 
Figure 2. S(k) over the k c 100 nm-I range of 
measurement at ( U )  T = 199 K. n = 11.86 nm-). 
(b)  T = 169 K. n = 14.51 (c )  T = 130 K, 
n = 16.83 nm-l. The full curve is the result of the 
viplet MHNC equalion wich the Aziz pair interaction plus 
the three-body ATM term. Value at k = 0 from [he 
compressibility data (*). 

.i 
- 2 ' .  1 l * f * f 1 * , * < 1 ' ' - '  
0 1 2 3 4 

r/q 

Figure 3. Thenretiwl (full curve) and experimental 
(points) h(r): from top to bottom we display h(r)  cor- 
responding to (c) of figure 2, h(r )  - 0.5 companding 
to ( b )  and h(r)  - 1 corresponding to (U). h(r)  is plot- 
ted as a function of r j c  where o = 0.4008 nm is lhe 
position of the minimum of the Aziz pair interaction. 

In figure 3 we show the resulting three h ( r )  together with the theoretical result. It 
is clear that there is an impressive agreement between theory and experiment. A very 
stringent test on the accuracy of the measured S(k) and of the extension of the data is 
given by the condition that g(r) = 0 (i.e. h(r) = -1) at short distance corresponding to the 
essentially impenetrable core. Different sources of error and the approximation inherent to 
the extension of the data at small and large k prevent the exact fulfilment of this condition 
but the small amplitude of the oscillations around -1 and their symmetrical shape indicate 
the accuracy of the data and that the extension method is accurate enough. 
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Figure 4. Detail of H ( k )  in lhe small-intemedinte-k 
mge (U ) ,  (b)  and (c)  as in figure 2. 
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Figure 5. Detail of H ( k )  in the large-k n n g e .  (a), (b)  
and (e) as in figure2 

4. Structural data and models of interaction 

We show in figures 4 and 5 respectively the low- and high-k behaviour of H(k) for the 
three states we have considered in the previous section. We show also the computed H(k) 
with the triplet MHNC equation as discussed in section 2. The Aziz pair interaction plus the 
ATM three-body term is used. From the comparison between the experimental and calculated 
H ( k )  we can deduce the following: firstly there is a striking agreement at the lower density, 
i.e. the higher temperature, while increasing the density and lowering the temperature the 
agreement is still very good but some deviations are apparent in the region of the fist two 
peaks and valleys; secondly at the higher density the experimental i?(k) has a convergence 
to the thermodynamic value of H ( 0 )  as good as the theory. Notice that at k = 0 the quantity 
most significant is S(0) which has a direct physical meaning. At T = 130 K and 169 K 
theory reproduces the compressibility value of S(0) to within 8% and 4% respectively, and 
the theoretical value is larger than experiment. At the lower temperature T = 130 K our 
experimental S(k) at small k is quite consistent with the value of S(0). At T = 169 K the 
comparison is not significant because these data have been used to fix the value of us/us. At 
the higher temperature T = 199 K there is a significant 02 behaviour at small k, signalling 
that the critical point (T, = 209 K and n, = 6.5 is not very far. In this situation 
the measurement does not extend to small enough k to allow a reasonable extrapolation to 
k = 0. On the other hand theory gives a significantly lower value of S(O), by 20% with 
respect to the compressibility value. We have verified that the crossover MHNC does not 
give a significantly different value of S(0). In the region of the critical point and around 



Structure of krypton and inferatomic interaction 4307 

it there is a very delicate balance between attractive and repulsive forces and the deviation 
in S(0) at T = 199 K between theory and experiment is probably due to some additional 
interatomic force. 

We consider now how different models of interaction affect the correlations and how 
these compare with experiment. We SM with the comparison in r space and in order to 
demonstrate the deviations we show in figure 6 the difference 

Ah@) = hexp(r) - hMHNC(r) (14) 

between the h(r) deduced from the experimental S ( k )  as discussed in the previous section 
and the MHNC result for different model interactions. We display the result for the Aziz 
interaction plus the ATM three-body term, for the Aziz-only interaction and for the U 
interaction. The Aziz plus three-body interaction is consistently the best for all three 
thermodynamic states with lAhl below 0.07 at all r. The three-body interaction does 
not have a large effect on h(r) but it is clearly visible that the presence of three-body forces 
improves the description of h(r) ,  in particular at short distance up to the first maximum of 
h(r) .  Ah(r) for the U interaction is much larger for all three states. The effect is most 
striking at short distance where IAhl is more than five times larger than for the best model 
interaction but at larger distance also the U model is clearly inferior. 

In a similar way we present in figure 7 the deviations 

for the three models of interaction we have considered, the Aziz pair interaction with 
and without the three-body interaction and the U interaction. Here we also consider the 
deviation from the SHS(~)  of hard spheres. Here again the result for the Aziz plus three 
body interaction is by far the best, at the two higher temperatures IASI is below 0.02 at 
all k. At T = 130 K AS becomes of the order of 0.05 but in this case this deviation is 
at least in part due to the inaccuracy of the Mmc equation as we discuss below. Only 
at T = 199 K does the three-body interaction give a sizeable contribution to S ( k )  and 
better agreement with experiment is obtained when the threebody interaction is present. 
At the two lower temperatures and higher densities the effect of u3 is appreciable only in 
the neighbourhood of k = 0. With the U potential AS(k) is typically five to ten times 
larger than for the best interatomic model and only the thermodynamic value S(0) is rather 
accurate (see table 2). AS(k) for the U potential is particularly large at the main maximum 
of S ( k )  and this corresponds to a shift and to a different height of this peak compared to 
experiment (see table 2). The degree of discrepancy between experiment and the U result 
depends on the values which are used for EU and uu. Other choices of E” and uu in 
the range indicated in section 2 do not modify in a significant way the deviations from 
experiment, so the results presented in the figures are typical of the U potential. 

As it is expected theoretically, Sm(k) gives a rather good description of S(k)  at the 
higher density and up to the first maximum of S(k) .  In this region it is much better than 
the U interaction and not much worse than the Azii one. At larger k, of course, SH&) has 
large deviation from experiment. As we move to lower density the deviation AS for the HS 
model becomes significant over all the k range. 

From the previous comparisons we can conclude that the U potential is clearly 
inadequate to represent the correlations in Kr for all the thermodynamic states we have 
investigated. When the Aziz form is used for the pair potential there is a clear indication 
that the three-body ATM interaction brings theory in better agreement with experiment both 
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Figure 6. Difference Ah(r) = h.,,(r) - hh(HNC(r) for 
the Aziz pair interaction with (full curve) and without 
(points) the ATM three-body interaction and for the U 
inlenction (chah curve). Thermodynamic states %e as 
in figure 2 m d  reduced r units as in figure 3. 
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Figure 7. Difference A S ( 4  = Sei&) - SMHNC(k) 
for the AEtz pair interaction with the ATU three-body 
term (full cwe), for the U interaction (chain curve) 
and for h x d  spheres (broken curve). The m u l t  for the 
Aziz intenrtion wilhout the Ulree-body term (points) 
is only shown in (a) up to 20 nm-'. In the other 
cases the result is almost coincident wilh the full w!". 

Thermodynamic states are as in figure 2 

in r and in k space. Correlations, not shown here, computed with the Barker et a1 [I41 
pair interaction are very close to the results with the Aziz one and we cannot discriminate 
between these two models of pair interaction on the basis of ow measurements. 

We consider now the significance of the remaining deviations between experiment and 
the results for the best model potential, i.e. the Aziz pair potentid plus threebody ATM 
term. For all three thermodynamic states the main deviation in Ah is present at small r 
(cf figure 6) with a negative dip followed by a positive maximum, and this corresponds 
to a small inward displacement of the main maximum of the theoretical h(r)  and also to 
a slightly higher peak (see table 2). This indicates that the interatomic forces should be 
slightly more repulsive at short distance. At larger distance Ah(r) is below the noise level 
in the case of T = 199 K whereas at the lower temperature T = 130 K, corresponding 
to the larger density, some deviation persists at larger r .  If the bridge function of MHNC 
were exact we could infer from Ah(r) what is the missing interaction. This Aut&) is 
the quantity which has to be added to the Aziz u&) in order that equation (9) is satisfied 
when g(r)  is the experimental value and c( r )  is the corresponding 02 direct correlation as 
obtained by the inverse Fourier transform of equation (4). Thus AuCN(r) is given by 
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Table Z S(0). position and value of S(k)  (kM and SM) and g(r) (w and a) at the nwin 
maximum. Experimental value (exp) and MHNC mults ate given for the Aziz pair interaction 
plus AW three-body term (Az+3b), for the Aziz pair interaction (Az) and for the Lennard-Jones 
interaction (U). 

T = 199.22 K; n = 11.86 n M 3  
e m  0.736 18.01 1.59 0.3974 2.20 
Az+3b 0.625 17.91 1.57 
AZ 1.256 17.97 1.58 
U 0.413 17.46 1.61 

T = 169.07 K: n = 14.57 nm-) 
exp 0.177 18.27 1.89 
Az+3b 0.184 18.16 1.88 
AZ 0.265 18.20 1.88 
U 0.121 17.84 1.99 

T = 130.06 K, n = 16.83 ~ m - ~  
e w  0.066 18.55 2.38 
Az+3b 0.071 18.49 2.40 
A2 0.092 18.49 2.38 

0.3952 
0.3945 
0.4025 

0.3955 
0,3941 
0.3936 
0.3995 

0.3945 
0.3935 
0.3931 

2.20 
2.24 
2.13 

2.42 
2.45 
2.47 
246 

2.84 
2.86 
2.87 

U 0.048 18.29 2.60 0.3974 2.95 

= kBT[gexp(r) - 1 - cexp(r) - Ingexp(r) + c ( r )  + &&; 4 1  - u z 0 ) .  (16) 

In figure 8 this excess effective pair interaction is shown for the three states. Notice that this 
A u a  does not have to be a pair interaction, but can be the effective two-body contribution 
due to threebody forces in excess of the ATM term or to four or higher-order terms. The 
common feature of AuPr is the presence of additional attraction at medium distance and of 
repulsion at shorter distance. For comparison we show also -ksTC(r), i.e. the effective 
two-body contribution due to the ATM three-body interaction, and the Aziz uz(r).  

Clearly the reliability of the computed Aufi depends critically on the accuracy of the 
M m C  equation, i.e. on the modeling of the bridge function. In case of the higher-density 
state we have a way to probe this by using g ( r )  from an accurate simulation [7] for the 
w potential. With the parameter for Kr the simulation corresponds to T = 124.65 K 
and n = 16.86 t ~ m - ~ ,  which is very close to our experiment 7. In figure 9 we compare 
Ah(r)  = hi$@) - hL&&) for the U interaction to Ah(r) = ha&) - hMHNC(r) for 
the Aziz plus ATM three-body term. It is clear that for r / u  2 1.5 (U = 0.4008 nm) 
the two Ah are very similar and we can infer that here the deviation between theory and 
experiment is mainly due to the approximation of MHNC. On the other hand for r/u < 1.5 
the two Ah(r)  are rather different, so the deviation from experiment must be genuine. It 
is possible to estimate approximately how the MHNC approximation on the bridge function 
affects Auefi(r). In fact it is known [9] that the bridge function is not very sensitive to the 
details of the interatomic interaction, so we can assume that the difference A& between 
the exact (but unknown) bridge function of Kr and the MHNC approximation is equal to the 
difference 

between the exact and the MHNC approximation in the case of the LI interaction. E:=, 
has been deduced [7] from simulation results, so A Eu is known. Therefore an improved 
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1 1.5 2 2.5 3 

Figure 8. Excess effenive pair intemtion 2s given in (16) (broken curve) for Le thermodynamic 
states as in figure 2. The chain curve represen6 -kgTC(r)  (7). i.e. Le effective pair intemtion 
corresponding to the three-body AW i n t e d o n .  In (b)  Ihe full culve reprebents Le An2 uz/lO 
and in ( E )  the full wrve represents Au.s(r) when the correction (17) to the bridge function is 
included. Reduced r unils are as in figure 3. 

estimate of the excess interaction Au,a(r) is obtained from equation (16) when Etis is 
replaced by EHs(r; d)  + A&@). This Au,a is also shown in figure S(c). A large part 
of the excess repulsion given by (16) in the range 0.4-0.6 nm is seen to be an artifact 
of the MHNC equation, but also the improved estimate of Aud gives an indication of a 
slightly stronger repulsion at short distance and more attraction in the range 0.&0.8 nm. 
This qualitative feature is similar to that of Au.e(r) for the other two states, and this adds 
strength to the conclusion that this is a genuine feature. The fact that the amplitude of 
Au,a changes with density and temperature indicates that A u a  should arise from many- 
body forces. However, the details of Au,a cannot be taken too seriously because MHNC 
is not accurate enough for this purpose. A more elaborate theoretical scheme, like the 
iterative predictor-corrector method [7], should be used. Also, a more elaborate scheme of 
extension of the experimental S(k)  at small and large k should be used in order to reduce 
the short-scale oscillations of g(r ) .  

The final comparison concems the oz direct correlation function c(r) .  The experimental 
c(r)  is deduced from (4) and in figure IO this is compared to the MHNC result for the Aziz 
plus the ATM three-body term. For c ( r )  also there is a very good agreement between theory 
and experiment. In figure I I we show the difference Ac(r )  between experiment and theory 
for the U potential also. There is again a large improvement when the more accurate 
representation of the interatomic forces is used. 
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r/u 
Figure 9. The full C U N ~  represents Ah(r) = hcxp(r) - hMWC(r) as in figure 6(c) and poinm 
represent Ah@)  = h s d r )  - hMHNc(r) for the U potenw. Reduced r units as in f i p  3. 

-5.0 

-7.5 :. 
-10.0 . 

./U 

Figure 10. Direct correlation function: experiment (points) and &.wry (full curve) as in figure 2. 

5. Conclusions 

The main conclusion of our work is that it is possible to obtain structural information on 
a simple liquid with the precision needed to obtain reliable information on the interatomic 
forces. We believe that for the first time we have shown that in the liquid phase also t hew 
potential does not give a realistic representation of the interatomic forces in a rare gas such 
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-1.0 " * 1 ' " ' I ' ' ' ' I ~ ' ' '  
0 1 2 3 4 

r/a 
Fi- 11. Difference Ac(r)  = c&) - CMHNC(T) for the Aziz pair interaction plus lhe lhree- 
body ATU term (full curve) a d  for the U intenclion (chain curve). In ( c )  Ac(r) is also shown 
for the An2 plus ATM term when the improved MHNC is used lhaf includes the coneetion (17) 
to the bridge function (broken curve). Thermodynamic states are JS in figure 2, 

as Kr. On the other hand, the Aziz pair interaction gives an excellent representation of the 
structure of Kr for all the thermodynamic states of our measurement. The difference between 
the Aziz and the Barker et al pair interaction, is too small and we cannot discriminate 
between them on the basis of our data. In addition, we find evidence that again at the level 
of structural data the presence of the tripledipole three-body forces gives an improved 
description of the system. It is gratifying that thennodynamic and structural data give a 
concordant indication in favour of the ATM three-body forces. 

At the level of pair correlations there is only one independent function. However, it is 
useful to compare theory and experiment in terms of all three functions, S(k) or N ( k ) ,  g(r) 
or h(r) and c ( r ) ,  and this is for several reasons. The direct physical meaning of g(r), for 
instance, can help us to understand the limitation of a model of the interatomic interaction 
and, at the same time, represents a very strong constraint on the accuracy of the experimental 
data for S(k)  via the condition that g ( r )  vanishes at short distance. On the other hand the 
effect of a certain interaction term can be concentrated on one of these correlation functions 
and in a certain range. For instance the stronger evidence from structural data for the ATM 
three-body interaction comes from the behaviour of g(r) at short distance. In this respect 
it is important to have an accurate theory of correlations which is also able to treat the 
presence of three-body forces, and this is the case with the triplet MHNC equation that we 
have used. This is because such a theory gives access to all these correlation functions and 
there is no size effect to worry about, as in simulation. However, we have evidence that for 
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the state of higher density close to the triple point, experiment shows the limit of accuracy 
of the MHNC equation. In fact, the small remaining difference between the experimental and 
the theoretical h(r )  has some features in common with the deviation between theory and the 
result of an accurate simulation for the LJ potential. By taking this into account we are able to 
estimate the excess effective pair interaction Au,a implied by the small remaining deviation 
between theory and experiment. For all the states of our experiment Au.a is repulsive at 
short distance and attractive at intermediate distance. The magnitude of A u , ~  is only a 
small fraction of the Aziz pair interaction and, at the two higher temperatures, also smaller 
than the effect of the three-body ATM term. hues becomes larger at the higher density, 
so the origin of this extra interaction should be in additional three-body or higher order 
forces. However, these effects on correlation functions are fairly small and a quantitative 
assessment of the excess interaction Auer requires either an integral equation substantially 
more accurate than MHNC, which is not available to our knowledge, or a symbiotic use of the 
integral equation with simulation methods. At the same time the effect of the uncertainty in 
the experimental S ( k )  and h(r ) ,  arising, for instance, from the adopted value for ns/uc and 
from the method of extension of S ( k )  at small and large k ,  should be carefully estimated. 

If it is true that all S ( k )  of liquids are very similar, we have shown that the information 
contained in S ( k )  is very rich and the signature of the interatomic forces is contained in the 
data at the level of experimental precision which is presently available. 
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